编号
zgly0001399298
文献类型
期刊论文
文献题名
实蝇科果实蝇属昆虫数字图像自动识别系统的构建和测试
作者单位
北京邮电大学自动化学院
中国科学院动物研究所动物进化与系统学院重点实验室
中国科学院自动化研究所模式识别国家重点实验室
母体文献
昆虫学报
年卷期
2011年02期
年份
2011
分类号
TP391.41
关键词
实蝇科
果实蝇属
数字图像
LBP特征
Adaboost算法
自动识别系统
文摘内容
针对双翅目实蝇科果实蝇属昆虫的自动识别,本文提出利用翅及中胸背板图像的局部二进制模式(local binary pattern,LBP)特征,采用Adaboost算法,设计和开发实蝇科果实蝇属昆虫数字图像自动识别系统(Automated Fruit fly Identification System-Bactrocera,AFIS-B)。该系统包括图像采集、图像裁剪、预处理、特征提取、分类器设计、识别和显示,共7个模块。研究结果表明:LBP特征可以有效鉴别实蝇科果实蝇属昆虫;在对实蝇科果实蝇属8个种的测试中,该系统表现出较高的准确性和稳定性,平均识别率可达80%以上。此外,还对果实蝇属昆虫翅膀及中胸背板图像在光照不均匀、姿态扭曲、样本受损及样本量大小等不同条件下的识别率进行了试验测试。结果表明,该系统对测试样本的光照不均匀、姿态扭曲和样本受损都表现出良好的鲁棒性,正确识别率与训练集样本各个种数量在一定条件下明显正相关,与训练集样本物种总量负相关。该项研究为实蝇科有害昆虫自动识别系统的构建及实际应用提供了理论、方法及基础数据的支撑,亦可为其他昆虫自动识别系统的研究和构建提供有益借鉴。